(Questio	n	Answer	Marks	Guida	ince
1	(i)		graph of shape with vertices at $(-2, -3)$, $(0, 0)$ and $(2, -4)$	2	M1 for 2 vertices correct	condone lines unruled; condone just missing vertex: ¹ / ₄ grid square tolerance
				[2]		
1	(ii)		graph of shape with vertices at $(1, -1)$, (3, 2) and (5, -2)	2	M1 for 2 vertices correct or for shape with vertices at $(-5, -1)$, $(-3, 2)$ and $(-1, -2)$	condone lines unruled; condone just missing vertex: ¹ / ₄ grid square tolerance
				[2]		

2	(i)	<i>x</i> = 4	B1		
2	(1)			4 3	
		(4, -3)	B1	or $x = 4, y = -3$	condone 4, –3
			[2]		
2	(ii)	(0, 13) isw	1	or [when $x = 0$], $y = 13$ isw	annotate this question if partially correct
				0 for just (13, 0) or (k , 13) where $k \neq 0$	
		[when $y = 0$,] $(x - 4)^2 = 3$	M1	or $x^2 - 8x + 13 = 0$]	may be implied by correct value(s) for <i>x</i> found
					allow M1 for $y = x^2 - 8x + 13$ only if they go on to find values for x as if y were 0
		$[x =]4 \pm \sqrt{3} \text{ or } \frac{8 \pm \sqrt{12}}{2} \text{ isw}$	A2	need not go on to give coordinate form	
		2		A1 for one root correct	
			[4]		
2	(iii)	replacement of x in their eqn by $(x - 2)$	M1	may be simplified; eg $[y =] (x - 6)^2 - 3$ or allow M1 for $(x - 6 - \sqrt{3})(x - 6 + \sqrt{3})$ [=0 or y]	condone omission of ' $y =$ ' for M1, but must be present in final line for A1
		completion to given answer $y = x^2 - 12x + 33$, showing at least one correct interim step	A1	cao; condone using $f(x - 2)$ in place of y	
			[2]		

(Question	Answer	Marks	Guid	ance
2	(iv)	$x^{2} - 12x + 33 = 8 - 2x$ or $(x - 6)^{2} - 3 = 8 - 2x$	M1	for equating curve and line; correct eqns only; or for attempt to subst $(8 - y)/2$ for x in $y = x^2 - 12x + 33$	annotate this question if partially correct
		$x^2 - 10x + 25 = 0$	M1	for rearrangement to zero, condoning one error such as omission of $= 0$ '	
		$(x-5)^2 [=0]$	A1	or showing $b^2 = 4ac$	allow $\frac{10 \pm \sqrt{0}}{2}$ or if $b^2 - 4ac = 0$ is not used explicitly A0 for $(x - 5)^2 = y$
		x = 5 www [so just one point of contact]	A1	may be part of coordinates $(5, k)$	allow recovery from $(x-5)^2 = y$
		point of contact at $(5, -2)$	A1	dependent on previous A1 earned; allow for $y = -2$ found	
		<u>alt. method</u>	or		examiners: use one mark scheme or the other, to the benefit of the candidate if both methods attempted, but do not use a mixture of the schemes
		for curve, $y' = 2x - 12$	M1		
		2x - 12 = -2	M1	for equating their y' to -2	
		x = 5, and y shown to be -2 using eqn to curve	A1		
		tgt is $y + 2 = -2(x - 5)$	A1		
		deriving $y = 8 - 2x$	A1		condone no further interim step if all working in this part is correct so far
			[5]		

3	(i	y = 2x + 3 drawn accurately	M1	at least as far as intersecting curve twice	ruled straight line and within 2mm of (2, 7) and (-1, 1)
		(-1.6 to -1.7, -0.2 to -0.3)	B 1	intersections may be in form $x =, y =$	
		(2.1 to 2.2, 7.2 to 7.4)	B1		
			[3]		if marking by parts and you see work relevant to (ii), put a yellow line here and in (ii) to alert you to look
3	(ii	$\frac{1}{x-2} = 2x+3$	M1	or attempt at elimination of <i>x</i> by rearrangement and substitution	may be seen in (i) – allow marks; the part (i) work appears at the foot of the image for (ii) so show marks there rather than in (i)
		1 = (2x + 3)(x - 2)	M1	condone lack of brackets	implies first M1 if that step not seen
		$1 = 2x^2 - x - 6 \text{ oe}$	A1	for correct expansion; need not be simplified; NB A0 for $2x^2 - x - 7 = 0$ without expansion seen [given answer]	implies second M1 if that step not seen after $\frac{1}{x-2} = 2x+3$ seen
		$\frac{1 \pm \sqrt{1^2 - 4 \times 2 \times -7}}{2 \times 2}$ oe $\frac{1 \pm \sqrt{57}}{4}$ isw	M1 A1	use of formula or completing square on given equation, with at most one error is eg coordinates; after completing square, accept $\frac{1}{4} \pm \sqrt{\frac{57}{16}}$ or better	completing square attempt must reach at least $[2](x - a)^2 = b$ or $(2x - c)^2 = d$ stage oe with at most one error
			[5]		

3	(iii	$\frac{1}{x-2} = -x + k$ and attempt at rearrangement	M1		
		$x^{2} - (k+2)x + 2k + 1 = 0$	M1	for simplifying and rearranging to zero; condone one error;	eg M1 bod for $x^2 - (k+2)x + 2k$ or M1 for $x^2 - 2kx + 2k + 1 = 0$
		$b^2 - 4ac = 0$ oe seen or used	M1	collection of x terms with bracket not required	= 0 may not be seen, but may be
		[k =] 0 or 4 as final answer, both required	A1	SC1 for 0 and 4 found if 3 rd M1 not earned	implied by their final values of <i>k</i> eg obtained graphically or using
			[4]	(may or may not have earned first two Ms)	calculus and/or final answer given as a range

4	(i)	'tick' at (2,4)(3,1)(5,6)	2 [2]	mark intent M1 for two points correct or for 'tick' at (2,-2) $(3,-5)$ and $(5,0)$	overlay to be provided condone tick unruled; allow M1 for points not joined but all correct:
4	(ii)	'tick' at (0,1)(1,-2)(3,3)	2 [2]	mark intent M1 for two points correct or for 'tick' at (4,1) (5,-2) and (7,3)	overlay to be provided condone tick unruled; allow M1 for points not joined but all correct:

5	(i) (10, 4)	2	0 for (5, 4); otherwise 1 for each coordinate	ignore accompanying working / description of transformation;
				condone omission of brackets;
				(Image includes back page for examiners to check that there is no work there)
5	(ii) (5,4)	2	0 for (5, 4); otherwise 1 for each coordinate	ignore accompanying working / description of transformation;
				condone omission of brackets

6	(i)	translation by $\begin{pmatrix} -4\\ 0 \end{pmatrix}$ or 4 [units] to left	B1 B1	0 for shift/move or 4 units in negative <i>x</i> direction o.e.
6	(ii)	sketch of parabola right way up and with minimum on negative <i>y</i> -axis min at $(0, -4)$ and graph through -2 and 2 on <i>x</i> -axis	B1 B1	mark intent for both marks must be labelled or shown nearby

7	i	grad AB = $\frac{9-1}{31}$ or 2	M1		
		y - 9 = 2(x - 3) or $y - 1 = 2(x + 1)$	M1	ft their <i>m</i> , or subst coords of A or B in $y =$ their $m x + c$	
		y = 2x + 3 o.e.	A1	or B3	3
	11	mid pt of AB = (1, 5)	M1	condone not stated explicitly, but used in eqn	
		grad perp = -1/grad AB	M1	soi by use eg in eqn	
		$y - 5 = -\frac{1}{2}(x - 1)$ o.e. or ft [no ft for just grad AB used]	M1	ft their grad and/or midpt, but M0 if their midpt not used; allow M1 for $y = -\frac{1}{2}x + c$ and then their midpt subst	
		at least one correct interim step towards given answer $2y + x =$ 11, and correct completion NB ans $2y + x =$ 11 given	M1	no ft; correct eqn only	

	alt method working back from ans:		mark one method or the other, to benefit of cand, not a mixture	
	$y = \frac{11 - x}{2}$ o.e.	M1		
	grad perp = -1/grad AB and showing/stating same as given line	M1	eg stating $-\frac{1}{2} \times 2 = -1$	
	IIIIe		or showing that (1, 5) is on $2y + x$	
	finding into of their $y = 2x + 3$ and $2y + x = 11$ [= (1, 5)]	M1	= 11, having found $(1, 5)$ first	4
	showing midpt of AB is (1, 5)	M1	[for both methods: for M4 must be fully correct]	
ш	showing $(-1 - 5)^2 + (1 - 3)^2 = 40$	M1	at least one interim step needed for	
	showing B to centre = $\sqrt{40}$ or verifying that (3, 9) fits given circle	M1	each mark; M0 for just $6^2 + 2^2 = 40$ with no other evidence such as a first line of working or a diagram; condone marks earned in reverse	2
iv	$(x-5)^2+3^2=40$	M1	order for subst y = 0 in circle eqn	
<u> </u>	$(x-5)^2 + 3^2 = 40$ $(x-5)^2 = 31$			
		M1	condone slip on rhs; or for rearrangement to zero (condone one error) and attempt at quad. formula [allow M1 M0 for $(x - 5)^2 = 40$ or for $(x - 5)^2 + 3^2 = 0$]	
	$x = 5 \pm \sqrt{31}$ or $\frac{10 \pm \sqrt{124}}{2}$ isw	A1	or $5 \pm \frac{\sqrt{124}}{\sqrt{124}}$	3